
Distributed Solution Algorithms for Security

Constrained Unit Commitment in Evolving Day

Ahead Electricity Markets

JESSE HOLZER (PRESENTER)

June 19, 2018 1

PNNL, MISO, GE, GUROBI

FERC TECHNICAL CONFERENCE, JUNE 27, 2018

SCUC trends and algorithms

Security Constrained Unit Comment (SCUC) for day ahead wholesale energy and reserves

Large ISO

Many generators with nonconvex operating costs and constraints ~ 1300

Many security constraints – line flow bounds, contingencies ~ 250 per time period

Many other convex resources – virtual bids, dispatchable demand ~ 20000 per time period

Market trends

Larger systems

More and smaller generators – e.g. natural gas turbines rather than coal

More virtuals and dispatchable demands

Larger problem, more difficult for MIP solvers, but less severely nonconvex

Developing algorithms adapted to the difficult features of the problem in the present and the future

RINS-E (E: emulation/enhanced)

ADMM-subsystems

June 19, 2018 2

RINS-E

RINS = relaxation induced neighborhood search, most good solutions found in Gurobi use RINS.

RINS-E = RINS emulated/enhanced.

Integer solutions and relaxation solutions from main Gurobi run generate subproblems.

Subproblems solved in parallel, asynchronous to main Gurobi run.

Specialized techniques for solving the RINS subproblems. Set loose security constraints as lazy. Fix

some virtual bid and dispatchable demand variables to decrease the subproblem size. Unfix some of the

fixed variables and resolve.

Subproblem techniques specifically adapted to evolving market characteristics.

Showed substantial improvement vs. Gurobi MIP solver

In best solution found by 1200 sec.

In time to 1% (resp. 0.5%, 0.2%, 0.1%, 0.05%) gap to true optimal value

June 19, 2018 3

RINS-E subproblem procedure

RINS subproblem:

Given XREL and XINC, fix all discrete variables with matching values and reoptimize remaining
variables, obtaining solution XSOL.

This subproblem is expensive.

We have developed heuristics to quickly obtain a good solution.

RINS-E subproblem procedure:

Given XREL and XINC, fix all variables with matching values to a given tolerance and reoptimize
remaining variables, with XINC as a MIP start, obtaining solution X1.

If no improvement from XINC to X1, set XINT = X1, go to END.

Fix matching variables among only discrete variables and VDD, use X1 to set SC with large slack as
lazy, reoptimize with X1 as a MIP start, obtaining new solution X2.

If no improvement from X1 to X2, set XINT = X2, go to END.

Fix matching variables among only discrete variables and VDD with narrow bounds, use X2 to set SC
with large slack as lazy, reoptimize with X2 as a MIP start, obtaining new solution X3, set XINT = X3, go
to END.

END: Fix all discrete variables in XINT, reoptimize continuous variables, return solution XSOL.

June 19, 2018 4

MIP vs RINS-E

Time to 0.05% gap with true opt

RINS-E: large speedup in time to 0.05% gap to opt, often 2x.

Note significant variation in performance of both methods with respect to formulation and seed.

June 19, 2018 5

form 6 6 0 0 6 6 0 0

seed 0 1 0 1 0 1 0 1

inst mip 0 mip 1 mip 2 mip 3 rins 0 rins 1 rins 2 rins 3 rins/mip 0 rins/mip best

102 - 410 471 - 334 378 - - 0 0.814634

114 2436 3008 2386 2078 435 729 638 777 0.178571 0.209336

115 1649 658 1135 1857 604 846 528 858 0.366283 0.802432

116 952 1697 2153 2367 1101 1683 2356 1700 1.156513 1.156513

117 2824 3492 2940 3703 1164 2006 748 732 0.412181 0.259207

119 1393 1407 1050 1089 881 611 1033 1162 0.632448 0.581905

121 1319 2148 2871 3649 2966 1783 1519 1696 2.248673 1.15163

130 1125 1381 1348 1525 538 694 824 1012 0.478222 0.478222

215 3537 3050 1079 - 3536 3335 2964 2340 0.999717 2.168675

220 2053 1592 - 1824 384 381 449 674 0.187043 0.239322

MIP vs RINS-E: time to mipgap=X%

Significant improvement for different X

MIP/RINS-E makes rapid progress, hitting various mipgap values well before MIP.

By the time mipgap=0.1% is achieved, MIP catches up.

June 19, 2018 6

RINS-E makes rapid progress in the upper bound.

Hits 0.05% gap to opt well before MIP.

Progress stalls because it is not possible to get a
significantly better solution (already at 0.05% to opt).

Lower bound (from MIP) progresses slowly.

June 19, 2018

Before the lower bound reaches 0.1% gap to opt,
MIP upper bound catches up to RINS-E.

Thus for time to 0.1% mip gap (ub – lb), RINS-E
shows no improvement over MIP.

We need a faster/stronger lower bound

Clearly RINS-E can be of value in a business context

7

MIP vs RINS-E: time to ubgap=0.05%

Significant improvement

MIP vs RINS-E

Not all cases show improvement

An unfavorable result for RINS-E. RINS-E uses a Gurobi MIP run to generate its subproblems.

How can the result of a standalone MIP run be so different (and better)?

The MIP run in RINS-E is limited to 8 threads, while the standalone run is 16.

Externalize the MIP run through HIPPO concurrent solver framework.

At worst concurrent will have the upper bounds from both MIP and RINS-E.

June 19, 2018 8

MIP and RINS-E: Performance variation with respect to

seed and formulation

Needs more study – these observations are not systematic.

MIP: better lower bound from dense formulation (2,3)

MIP: More consistent upper bound from sparse formulation (0,1)

RINS-E: Generally less variation, sparse formulation looks better.

June 19, 2018 9

ADMM Subsystem Decomposition

Partition resources (generators, virtuals, dispatchable demands) into subsystems s.

Subsystem s solves a subproblem trying to meet a subsystem-specific demand Ys for energy and
reserves.

Express system-wide constraints (energy and reserve balance, security) in terms of Ys, not the
individual resource dispatch values. This may be an approximation.

Solve the subsystem subproblems in alternation with the system-wide constraints (ADMM). Some
virtuals and dispatchable demands may be included in the system constraint subproblem.

At each iteration of ADMM, extract the values of the integer variables and quickly solve a SCED to
determine a feasible solution of SCUC.

Construct subsystems by clustering resources based on their coefficients in the system
constraints.

Larger subsystems are more difficult to solve. But the behavior of Ys is less erratic, closer to
convex case, enabling better convergence of the overall method.

Even single generator subsystem decomposition can be expected to perform better in future power
systems with more and smaller resources.

June 19, 2018 10

ADMM Subsystem Decomposition

Standard Formulation

Notation

R – resources (each individual generator or virtual or dispatchable demand bid)

T – time periods

C – (system-wide) constraints (energy balance and security constraints)

Xrt – energy dispatch from resource r in time t

Acrt – coefficient of resource r in constraint c in time t

Hct – penalty function for constraint c in time t

Frt – cost function for resource r in time t (energy, no load, etc.)

Wr – resource r feasible set (gen bounds, ramping, etc)

Basic model

Minimize

∑rt Frt(Xrt) + ∑ct Hct (∑r Acrt Xrt)

Subject to

Xr ϵ Wr for all r ϵ R

June 19, 2018 11

ϵ

ADMM Subsystem Decomposition

Subsystem Formulation

Notation
S – subsystems

Rs – resources contained in subsystem s

R0 – global resources, not contained in any subsystem, no nonconvex or intertemporal
constraints or costs

Bcst – coefficient of subsystem s in constraint c in time t

Yst – total energy dispatch from resources in subsystem s in time t

Zst – copy of Y

Wrt – feasible set for Xrt, r ϵ Q

Assumptions
The sets R0 and Rs, s ϵ S, form a partition of R

Wr = ΠtϵT Wrt for all r ϵ R0

Subsystem formulation
Minimize

∑rt Frt (Xrt) + ∑ct Hct (∑s Bcst Zst + ∑rϵQ Acrt Xrt)

Subject to
Xr ϵ Wr for all s ϵ S, r ϵ Rs

Xrt ϵ Wrt for all r ϵ R0, t ϵ T

Yst = ∑rϵRs Xrt for all s ϵ S, t ϵ T

Yst = Zst for all s ϵ S, t ϵ T

June 19, 2018 12

ADMM Subsystem Decomposition

Augmented Lagrangian Relaxation

Notation

Pst – multiplier on linking constraints Yst = Zst for subsystem s in time t

ρ – regularization parameter, > 0

Augmented Lagrangian relaxation

Minimize

∑rt Frt (Xrt) + ∑ct Hct (∑s Bcst Zst + ∑rϵQ Acrt Xrt) + ∑st (Pst (Yst – Zst) + ρ/2 |Yst – Zst |
2)

Subject to

Xr ϵ Wr for all s ϵ S, r ϵ Rs

Xrt ϵ Wrt for all r ϵ R0, t ϵ T

Yst = ∑rϵRs Xrt for all s ϵ S, t ϵ T

June 19, 2018 13

ADMM Subsystem Decomposition

Algorithm

Given (Xk, Yk, Zk, Pk), compute (Xk+1, Yk+1, Zk+1, Pk+1) by:

Step 1 subproblem:

Fix: ((Xr
k)rϵR0, Z

k) → ((Xr)rϵR0, Z)

Optimize: ((Xr)rϵRs, Ys)sϵS → ((Xr
k+1)rϵRs, Ys

k+1)sϵS

Step 2 subproblem:

Fix: ((Xr
k+1)rϵRs, Ys

k+1)sϵS → ((Xr)rϵRs, Ys)sϵS

Optimize: ((Xr)rϵR0, Z) → ((Xr
k+1)rϵR0, Z

k+1)

Multiplier update:

Pk+1 = Pk – ρ (Yk+1 – Zk+1)

June 19, 2018 14

ADMM Subsystem Decomposition

Subproblem components

The step 1 subproblem is decomposable with respect to s in S. Component s is:

Minimize

∑rϵRs,t Frt (Xrt) + ∑t (Pst (Yst – Zst) + ρ/2 |Yst – Zst |
2)

With respect to

Xr , r ϵ Rs, Ys

Subject to

Xr ϵ Wr for all r ϵ Rs

Yst = ∑rϵRs Xrt for all t ϵ T

The step 2 subproblem is decomposable with respect to t in T. Component t is:

Minimize

∑rϵR0 Frt (Xrt) + ∑c Hct (∑s Bcst Zst + ∑rϵR0 Acrt Xrt) + ∑s (Pst (Yst – Zst) + ρ/2 |Yst – Zst |
2)

With respect to

Xr, r ϵ R0, Zs, s ϵ S

Subject to

Xrt ϵ Wrt for all r ϵ R0

June 19, 2018 15

ADMM Subsystem Decomposition

Subsystem Construction

For r in R, consider the point Ar = (Acrt, c ϵ C, t ϵ T).

Cluster the points Ar. Each cluster defines a set Rs of resources.

Define B by

Bcst = 1/|Rs| ∑r ϵ Rs
Acrt

Clustering techniques

Round A to a given precision, cluster identical columns

For each resource, try to find unmatched resources with nearby A to a given tolerance, subject to a limit

on subsystem size.

Given a set of subsystems on generator resources, allocate remaining virtual and dispatchable demand

resources with preference to increasing the smaller subsystems to make them less severely nonconvex.

Subsystem formulation is not exactly equivalent to basic formulation. But we just need the

sequence of integer points out of ADMM, and we then run SCED on each using the basic

formulation.

Reserve products can also be treated in this method.

June 19, 2018 16

ADMM Single Generator Subsystem Performance

Some improvements on ADMM with single generator decomposition.

Skip randomly selected subproblems (50%) in each iteration. Counteracts tendency for two generators

to act to fix a system-wide constraint when only one is needed. Shows improvement, but still not as

good as MIP or RINS-E

Tried adding derived bounds on linking variables in step 2 subproblems. Generally not helpful.

June 19, 2018 17

instance admm_gap admm_gap admm_gap rins_gap mip_gap

orig skip_subs q_bnd_2 mp mp

102 0.237% 0.061% 0.065% 0.005% 0.004%

114 0.429% 0.117% 0.127% 0.018% 0.033%

115 0.323% 0.155% 0.119% 0.015% 0.001%

116 0.339% 0.302% 0.092% 0.029% 0.010%

117 0.541% 0.222% 0.517% 0.016% 0.081%

119 1.365% 0.365% 0.348% 0.007% 0.001%

121 7.435% 1.986% 2.587% 0.001% 0.001%

130 1.950% 0.482% 0.421% 0.026% 0.002%

215 6.492% 1.747% 3.237% 0.044% 1.041%

220 0.318% 0.096% 0.095% 0.013% 0.054%

Results on multiple
algorithms, best solution
obtained in 1200 seconds, gap
to true optimal value.

Note all the instances showed
improvement in ADMM from
skipping random subproblem
solves, particularly those
where the gap was very large.

ADMM convergence, MIP vs relaxed MIP

instances 114 and 115

On SCUC MIP problem, progress in primal and dual residuals and in feasible objective tends to

stall.

Converges with relaxed integer variables.

Nonconvexity is the cause of stalling.

June 19, 2018 18

How nonconvexity causes stalling in ADMM with single

generator subsystems

2 identical generators at a node, p_min=1, p_max=1, no_load_cost=1

load=1

Solution: p1=1, p2=0

In ADMM, the step 2 subproblem will find p1=p2=0.5 (or some other common value), but step 1

can ONLY find p1=p2=0 or p1=p2=1 because they are in separate step 1 components

Need step 1 subproblem components containing multiple generators, hence subsystem

decomposition.

June 19, 2018 19

ADMM subsystem preliminary results

Instance 114, 1200 sec

True optimal value: 14380892

1 gen subsys: 14443978

2 gen subsys: 14408697

3 gen subsys: 14411838

5 gen subsys: 14461945

June 19, 2018 20

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0

5000000

10000000

15000000

20000000

25000000

0 200 400 600 800 1000 1200 1400

re
si

d

o
b

j

time (sec)

3 gen

cost opt primal resid dual resid

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0

5000000

10000000

15000000

20000000

25000000

0 200 400 600 800 1000 1200 1400

re
si

d

o
b

j

time (sec)

2 gen

cost opt primal resid dual resid

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0

5000000

10000000

15000000

20000000

25000000

30000000

0 200 400 600 800 1000 1200 1400

re
si

d

o
b

j

time (sec)

5 gen

cost opt primal resid dual resid

1.00E+00

1.00E+02

1.00E+04

0

10000000

20000000

30000000

0 500 1000 1500

re
si

d

o
b

j

time (sec)

1 gen

cost opt primal resid dual resid

Thank you

21

